Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Journal of Biological Chemistry ; 299(3 Supplement):S590, 2023.
Article in English | EMBASE | ID: covidwho-2318140

ABSTRACT

The SARS-CoV-2 replication and transcription complex (RTC) is made up of nine distinct non-structural viral proteins encoded by the ORF1ab gene. These proteins house seven enzymatic sites that synthesize new viral genomic and subgenomic RNA, proofread and correct errors in the synthesis, add a 5'-cap to the nascent RNA, and truncate the intermediate negative sense 5'-poly-U tail. While x-ray crystallography and cryo-EM have provided high resolution structures of each of the individual proteins of the RTC and have shed light on how subsets of the proteins associate, a full picture of the RTC has remained elusive. Using molecular modeling tools, including protein-protein docking, we have generated a model of the RTC centered around hexameric nsp15, which is capped on two faces by trimers of nsp14/nsp16/(nsp10)2. A conformational change of nsp14, necessary to facilitate binding to nsp15, then recruits six nsp12/nsp7/(nsp8)2 polymerase subunits. To this, six nsp13 subunits are distributed around the complex. The resulting superstructure is composed of 60 subunits total and positions the nsp14 exonuclease and nsp15 endonuclease sites in line with the dsRNA exiting the nsp12 polymerase site. Nsp10 acts to separate the RNA strands, directing the nascent strand to the nsp12 NiRAN site, where a transiently associated nsp9 facilitates the first step in mRNA capping. The RNA is then directed to the nsp14 N7-methyltransferase site and the nsp16 2'O-methyltransferase site to complete the capping. Additionally, template switching during transcription is proposed to be facilitated by positioning of the TRS-L RNA-bound N-protein above the polymerase active site, between two subunits of nsp13. The model, while constructed based on structural considerations, offers a unifying set of hypotheses to explain the diverse set of processes involved in coronavirus genome replication and transcription. All work presented was funded by Gilead Sciences.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

2.
Geroscience ; 2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-2319779

ABSTRACT

A new variant of SARS-CoV-2 named Omicron (B.1.1.529) was isolated from an HIV-infected patient in Botswana, South Africa, in November 2021. Whole genome sequencing revealed a multitude of mutations and its relationship to the mutation-rich Alpha variant that had been isolated from a cancer patient. It is conceivable that very high prevalence of HIV-infected individuals as susceptible hosts in South Africa and their immunocompromised state may predispose for accumulation of coronavirus mutations. Coronaviruses uniquely code for an N-terminal 3' to 5'exonuclease (ExoN, nsp14) that removes mismatched nucleotides paired by the RNA dependent RNA polymerase. Its activity depends preferably on Mg2+ and other divalent cations (manganese, cobalt and zinc). On the contrary, methyl transferase activity of non-structural protein (nsp) 14 and nsp16 both complexed with nsp10 requires Mn2+. Enzymes in successive stages of HIV infections require the same cations. In HIV-infected organisms, a subsequent coronavirus infection encounters with altered homeostasis of the body including relative starvation of divalent cations induced by interleukin production of HIV-infected cells. It is hypothesized that selective diminished efficacy of ExoN in the absence of sufficient amount of magnesium may result in the accumulation of mutations. Unusual mutations and recombinations of heterologous viruses detected in AIDS patients also suggest that long-lasting persistence of superinfecting viruses may also contribute to the selection of genetic variants. Non-nucleoside reverse transcriptase inhibitors partially restore divalent cations' equilibrium. As a practical approach, implementation of highly active antiretroviral therapy against HIV replication and vaccination against coronaviruses may be a successful strategy to reduce the risk of selection of similar mutants.

3.
Her Russ Acad Sci ; 92(4): 470-478, 2022.
Article in English | MEDLINE | ID: covidwho-2008792

ABSTRACT

The COVID-19 pandemic has made it necessary to create antivirals active against the SARS-CoV-2 coronavirus. One of the widely used strategies to fight off viral infections is the use of modified nucleoside analogues that inhibit viral replication by incorporating DNA or RNA into the growing chain, thus stopping its synthesis. The difficulty of using this method of treatment in the case of SARS-CoV-2 is that coronaviruses have an effective mechanism for maintaining genome stability. Its central element is the nsp14 protein, which is characterized by exonuclease activity, due to which incorrectly included and noncanonical nucleotides are removed from the 3' end of the growing RNA chain. Inhibitors of nsp14 exonuclease and nucleoside analogues resistant to its action are viewed as potential targets for anticoronavirus therapy.

4.
J Virol ; 96(16): e0084122, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1973794

ABSTRACT

Coronaviruses (CoVs) initiate replication by translation of the positive-sense RNA genome into the replicase polyproteins connecting 16 nonstructural protein domains (nsp1-16), which are subsequently processed by viral proteases to yield mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of translation or proteolytic processing of replicase polyproteins results in rapid cessation of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble into functional replication-transcription complexes (RTCs), including the enzymatic nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and replication. To date, the solved partial RTC structures, biochemistry, and models use or assume completely processed, mature nsp. Here, we demonstrate that in MHV, engineered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recovery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14 and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics, impaired genome production, altered abundance and patterns of recombination, and impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses demonstrated mutation frequencies that were significantly higher than with the WT. The results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV viability and that functions of the RTC/nsp14-ExoN are impaired when assembled with noncleaved intermediates. These data will inform future genetic, structural, biochemical, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal new approaches for inhibition or attenuation of CoV infection. IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstructural replicase proteins to form the replication-transcription complex. Coronavirus replication-transcription complex models assume mature subunits; however, mechanisms of coronavirus maturation and replicase complex formation have yet to be defined. Here, we show that for the coronavirus murine hepatitis virus, cleavage between the nonstructural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does alter RNA synthesis and recombination. These results shed new light on the requirements for coronavirus maturation and replication-transcription complex assembly, and they may reveal novel therapeutic targets and strategies for attenuation.


Subject(s)
Exoribonucleases , Genetic Fitness , Murine hepatitis virus , Proteolysis , RNA, Viral , Viral Nonstructural Proteins , Viral Replicase Complex Proteins , Animals , Exoribonucleases/genetics , Exoribonucleases/metabolism , Mice , Murine hepatitis virus/enzymology , Murine hepatitis virus/genetics , Murine hepatitis virus/growth & development , Murine hepatitis virus/physiology , Mutation , Polyproteins/chemistry , Polyproteins/genetics , Polyproteins/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Recombination, Genetic , Transcription, Genetic , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Replicase Complex Proteins/chemistry , Viral Replicase Complex Proteins/genetics , Viral Replicase Complex Proteins/metabolism , Virus Replication
5.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1964012

ABSTRACT

We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA- mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3'-5' exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3'-5' exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme's activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol-1) and circular dichroism spectra > 60 °C indicate the enzyme's moderate thermal stability.


Subject(s)
Bacteriophages , Thermus thermophilus , Amino Acid Sequence , Bacteriophages/metabolism , DNA-Directed DNA Polymerase/metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphodiesterase I/metabolism , Thermus thermophilus/metabolism
6.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: covidwho-1917793

ABSTRACT

Despite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely explored in the treatment of different diseases and used as a scaffold for the design of novel drugs. Therefore, herein we evaluate seven flavonoids divided into three subclasses, isoflavone (genistein), flavone (apigenin and luteolin) and flavonol (fisetin, kaempferol, myricetin, and quercetin), for COVID-19 treatment using cell-based assays and in silico calculations validated with experimental enzymatic data. The flavonols were better SARS-CoV-2 inhibitors than isoflavone and flavones. The increasing number of hydroxyl groups in ring B of the flavonols kaempferol, quercetin, and myricetin decreased the 50% effective concentration (EC50) value due to their impact on the orientation of the compounds inside the target. Myricetin and fisetin appear to be preferred candidates; they are both anti-inflammatory (decreasing TNF-α levels) and inhibit SARS-CoV-2 mainly by targeting the processability of the main protease (Mpro) in a non-competitive manner, with a potency comparable to the repurposed drug atazanavir. However, fisetin and myricetin might also be considered hits that are amenable to synthetic modification to improve their anti-SARS-CoV-2 profile by inhibiting not only Mpro, but also the 3'-5' exonuclease (ExoN).


Subject(s)
COVID-19 Drug Treatment , Flavones , Isoflavones , Flavones/pharmacology , Flavonoids/pharmacology , Flavonols/pharmacology , Humans , Isoflavones/pharmacology , Kaempferols , Molecular Docking Simulation , Protease Inhibitors , Quercetin/pharmacology , SARS-CoV-2
7.
Virologie ; 26(2):150-151, 2022.
Article in English | EMBASE | ID: covidwho-1913207

ABSTRACT

Nidovirales is an extraordinary order of complex positive-stranded RNA viruses including some of the largest RNA genomes (12-41 kb) among which notable human health burdens: SARS-CoV-1, SARS-CoV-2, MERS-CoV, etc. Recent advance in genome sequencing is slowly filling the gaps between and beyond the classified nidoviral families. Still, the research is lagging behind to understand the evolution of RNA genomes. For example, how are these large genome RNA viruses able to bypass the length and stability constraints of an RNA molecule? Is there any link between increasing length and gaining a functional domain or a special structural feature? To answer these questions, we started with database mining to extract novel nidoviral genomes and annotated different domains in polyproteins of classified and unclassified nidoviruses using HHpred and HHblits tools (Zimmermann L, et al. 2018). We observed a significant variation across the order regarding presence/absence, fold/structure type, co-factor (or enhancer) presence/absence, presence of one motif or the other and genome location of enzymes: Exonuclease (ExoN), N-7 Methyltransferase (MTase), 2'-O-MTase and RNA dependent RNA polymerase (RdRp). A trend seen with this bioinformatic analysis directly implies that stable RNA genome increase as well as maintenance is driven by the synergy of modifying enzymes: MTases, RNA proofreading by ExoNs and fast & processive RdRps (Ferron F, et al. 2021). Next, after their identification, we are trying to characterize these large RNA genome genetic markers: MTase(s) & ExoN, to have a comprehensive understanding of nidoviruses evolution. We have identified, expressed and purified a new nidoviral MTase from a Tobaniviridae family member, White Bream Virus (WBV). This enzyme is unique in terms of its location in ORF1a and not in ORF1b (Ferron F, et al. 2019). Functional and mutational studies show this new MTase to contain N-7 guanine specific, S-adenosyl-methionine (SAM) dependent capping activity (cap-0). Aligning with our predictions, structural characterization confirms that it has a Rossmann fold (RF) SAMdependent RNA-cap N7-guanine MTase. This study answers the missing link of capping activity in these members, which is somewhat only established for coronaviruses in this large genome order. Evaluating such enzymes is a step forward in the direction of fundamental understanding of how these RNA viruses are successfully expanding and maintaining their large genomes as well as coping up to fight against the host innate immunity.

8.
Viruses ; 14(7)2022 06 28.
Article in English | MEDLINE | ID: covidwho-1911662

ABSTRACT

With the recent global spread of new SARS-CoV-2 variants, there remains an urgent need to develop effective and variant-resistant oral drugs. Recently, we reported in vitro results validating the use of combination drugs targeting both the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and proofreading exonuclease (ExoN) as potential COVID-19 therapeutics. For the nucleotide analogues to be efficient SARS-CoV-2 inhibitors, two properties are required: efficient incorporation by RdRp and substantial resistance to excision by ExoN. Here, we have selected and evaluated nucleotide analogues with a variety of structural features for resistance to ExoN removal when they are attached at the 3' RNA terminus. We found that dideoxynucleotides and other nucleotides lacking both 2'- and 3'-OH groups were most resistant to ExoN excision, whereas those possessing both 2'- and 3'-OH groups were efficiently removed. We also found that the 3'-OH group in the nucleotide analogues was more critical than the 2'-OH for excision by ExoN. Since the functionally important sequences in Nsp14/10 are highly conserved among all SARS-CoV-2 variants, these identified structural features of nucleotide analogues offer invaluable insights for designing effective RdRp inhibitors that can be simultaneously efficiently incorporated by the RdRp and substantially resist ExoN excision. Such newly developed RdRp terminators would be good candidates to evaluate their ability to inhibit SARS-CoV-2 in cell culture and animal models, perhaps combined with additional exonuclease inhibitors to increase their overall effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents/therapeutic use , Exonucleases , Nucleotides/chemistry , RNA, Viral/genetics
9.
Topics in Antiviral Medicine ; 30(1 SUPPL):117-118, 2022.
Article in English | EMBASE | ID: covidwho-1880890

ABSTRACT

Background: Children generally develop a mild disease after SARS-CoV-2 infection;it has been shown (Loske J al., 2021) that higher basal expression of relevant pattern recognition receptors may result in a stronger early innate antiviral than in adults. However, how the early interferon (IFN) response differs from that in adults is not fully characterized. Hence, we aimed to investigate the expression of several IFN-related genes in nasopharyngeal (NP) cells from children and adults with asymptomatic or mild COVID-19, not requiring hospitalization. Methods: Children and adults attending emergency departments (ED) of Sapienza University Hospital, to perform SARS-CoV-2 molecular tests, were enrolled from November 2020 to February 2021, after informed consent was obtained. RNA from residual NP swabs was purified and 200 ng were reverse transcribed. Gene expression of genes coding for type I and III IFNs and for the well-known markers of IFNs' activation, ISG15 and ISG56, was measured by exonuclease-based Real time PCR assays with relative quantification to the invariant gene GUS (the 2-ΔCt method). Results: Residual NP cells from a total of 132 children and adults were included in the study;56 had SARS-CoV-2 positive results and 76 resulted negative. The expression of all tested genes showed a moderate significant inverse correlation with age, with the exception of ISG15. Participants were further stratified in age groups (< 16;16-35;36-65 years) resulting in: 25 SARS-CoV-2 negative and 26-positive children;14 SARS-CoV-2 negative and 16-positive young adults and 37 SARS-CoV-2 negative and 14-positive adults. In SARS-CoV-2 negative samples, higher levels of all study genes were found in children, while significantly decreasing in young and elderly adults. Among SARS-CoV-2 positive samples, those from children showed significantly higher levels of type I IFNs and of IFN lambda2 whereas ISG15 was far more elevated in adults. Moreover, levels of all type I IFNs, and of IFN lambda2, were significantly higher in individuals with no symptoms (65% of children and 44% of the young adults), whereas ISG15 was elevated in those with a mild COVID-19. Conclusion: The higher baseline expression of IFN-related genes in children may prompt a quicker activation of the IFN response after SARS-CoV-2 infection and contribute to effective control of viral replication;the higher ISG activation in adults may be caused by the inflammatory response and associated to COVID-19 symptoms.

10.
Molecules ; 27(9)2022 May 03.
Article in English | MEDLINE | ID: covidwho-1820344

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. While the development of vaccines and the emergence of antiviral therapeutics is promising, alternative strategies to combat COVID-19 (and potential future pandemics) remain an unmet need. Coronaviruses feature a unique mechanism that may present opportunities for therapeutic intervention: the RNA polymerase complex of coronaviruses is distinct in its ability to proofread and remove mismatched nucleotides during genome replication and transcription. The proofreading activity has been linked to the exonuclease (ExoN) activity of non-structural protein 14 (NSP14). Here, we review the role of NSP14, and other NSPs, in SARS-CoV-2 replication and describe the assays that have been developed to assess the ExoN function. We also review the nucleoside analogs and non-nucleoside inhibitors known to interfere with the proofreading activity of NSP14. Although not yet validated, the potential use of non-nucleoside proofreading inhibitors in combination with chain-terminating nucleosides may be a promising avenue for the development of anti-CoV agents.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Exoribonucleases/metabolism , Humans , Pandemics , RNA, Viral/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
11.
Egyptian Pharmaceutical Journal ; 20(4):371-392, 2021.
Article in English | Scopus | ID: covidwho-1625983

ABSTRACT

Background and objectives The newly emerged severe acute respiratory syndrome coronavirus is spreading worldwide rapidly with increasing incidence rates. Due to lack of effective treatments and vaccines, various drug repurposing studies are being developed. Searching for available antiviral drug libraries is the best and fast option to advance to clinical trials and spread their application among infected patients. Materials and methods Molecular docking study was performed utilizing AutoDock 4.2 system and Discovery Studio 4.5, which were utilized to predict the activity pocket of the target proteins. Results and conclusion The results found that the interacting affinities resulted from the molecular simulation of 3CL protease with ligands Ledipasvir, Sofosbuvir, Ribavirin, Galidesivir, Tenofovir, and Remdesivir were -7.2, -7.4, -7.2, -6.3, -6.1 and -6.6 kcal/mol, respectively. Similarly, the interacting energies obtained from the docking of RNA helicase with ligands were -7.9, -7.4, -6.4, -7.9, -6.2, and -6.9 kcal/mol. Also, the binding energies obtained from the docking of 3′-5′ exoribonuclease with ligands were -10.6, -10.1, -6.5, -7.1, -6.1, and -9.3 kcal/mol. Finally, the binding energies score from the docking of the RNA-dependent RNA polymerase with ligands was -9.6, -6.9, -6.2, -6.6, -6.7, and -6.4 kcal/mol. Based on the binding energy score and docking result, Ledipasvir and Sofosbuvir have a higher affinity of the drug molecule such as against RNA-dependent RNA polymerase, exonuclease, and 3CL protease. Besides, Ledipasvir and Galidesivir show prominent binding interaction with severe acute respiratory syndrome coronavirus RNA helicase. The results are promising for evaluated drugs especially Ledipasvir and Sofosbuvir and could be useful in emergency treatment of coronavirus disease 2019 patients. © COLING 2018.All right reserved.

12.
Indian J Pathol Microbiol ; 64(4): 771-775, 2021.
Article in English | MEDLINE | ID: covidwho-1485273

ABSTRACT

CONTEXT: The rapid outbreak of SARS-CoV-2 has become a significant global health concern, highlighting the dire need for antiviral therapeutic agents. RNA-dependent RNA polymerase (RdRp) of coronavirus plays crucial roles in RNA synthesis, and hence remains the druggable target for the treatment of this disease. The most potent broad-spectrum inhibitors of viral RdRp are members of nucleoside analogs (NAs). However, SARS-CoV-2 proved to be a challenging one for the novel NA drug designing strategy because coronavirus possesses an exonuclease (ExoN) domain that is capable of excising NAs, thus showing resistance to existing antiviral drugs. AIM: The objective of our study was to compare the SARS-CoV-2 exonuclease (nsp14) protein sequence of Wuhan-type virus with those of Indian SARS-Cov-2 isolates and to study the effect of multiple mutations on the secondary structure alterations of proteins. SUBJECTS AND METHODS: Multiple-sequence alignment of exonuclease amino-acid sequences followed by phylogenetic analysis and prediction of its secondary structure of the protein was performed. RESULTS: Altogether, seven mutations were detected in the nsp14 of Indian SARS-CoV-2 isolates. Subsequently, prediction of their secondary structures revealed that mutations altered the structural stability of exonuclease proteins. CONCLUSIONS: Present findings, therefore, further suggest that evolvability of SARS-CoV-2 is primarily associated with the onset of multiple novel mutations that rapidly spread at several new locations of the viral genome and also provides important insight to develop specific control strategies to fight against COVID-19 infections.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/genetics , Exonucleases/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Sequence Analysis, DNA , China , Drug Delivery Systems/methods , Genetic Variation , Genotype , Humans , India , Mutation , Phylogeny
13.
Nano Today ; 41: 101308, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1446977

ABSTRACT

A once-in-a-century global public health crisis, the COVID-19 pandemic has damaged human health and world economy greatly. To help combat the virus, we report a self-resetting molecular probe capable of repeatedly detecting SARS-CoV-2 RNA, developed by orchestrating a fuel dissipative system via DNA nanotechnology. A set of simulation toolkits was utilized to design the probe, permitting highly consistent signal amplitudes across cyclic detections. Uniquely, full width at half maximum regulated by dissipative kinetics exhibits a fingerprint signal suitable for high confidential identifications of single-nucleotide variants. Further examination on multiple human-infectious RNA viruses, including ZIKV, MERS-CoV, and SARS-CoV, demonstrates the generic detection capability and superior orthogonality of the probe. It also correctly classified all the clinical samples from 55 COVID-19 patients and 55 controls. Greatly enhancing the screening capability for COVID-19 and other infectious diseases, this probe could help with disease control and build a broader global public health agenda.

14.
Enzymes ; 49: 39-62, 2021.
Article in English | MEDLINE | ID: covidwho-1439811

ABSTRACT

Nucleotide analogs are the cornerstone of direct acting antivirals used to control infection by RNA viruses. Here we review what is known about existing nucleotide/nucleoside analogs and the kinetics and mechanisms of RNA and DNA replication, with emphasis on the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) in comparison to HIV reverse transcriptase and Hepatitis C RdRp. We demonstrate how accurate kinetic analysis reveals surprising results to explain the effectiveness of antiviral nucleoside analogs providing guidelines for the design of new inhibitors.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Adenosine Monophosphate , Alanine , Antiviral Agents/pharmacology , Humans , Kinetics , Nucleotides , RNA, Viral/genetics , SARS-CoV-2
15.
Viruses ; 13(9)2021 09 21.
Article in English | MEDLINE | ID: covidwho-1427003

ABSTRACT

The error rate displayed during template copying to produce viral RNA progeny is a biologically relevant parameter of the replication complexes of viruses. It has consequences for virus-host interactions, and it represents the first step in the diversification of viruses in nature. Measurements during infections and with purified viral polymerases indicate that mutation rates for RNA viruses are in the range of 10-3 to 10-6 copying errors per nucleotide incorporated into the nascent RNA product. Although viruses are thought to exploit high error rates for adaptation to changing environments, some of them possess misincorporation correcting activities. One of them is a proofreading-repair 3' to 5' exonuclease present in coronaviruses that may decrease the error rate during replication. Here we review experimental evidence and models of information maintenance that explain why elevated mutation rates have been preserved during the evolution of RNA (and some DNA) viruses. The models also offer an interpretation of why error correction mechanisms have evolved to maintain the stability of genetic information carried out by large viral RNA genomes such as the coronaviruses.


Subject(s)
Genome, Viral , Mutation , RNA Virus Infections/virology , RNA Viruses/genetics , RNA, Viral , Animals , Biological Evolution , Coronavirus/genetics , Exonucleases/metabolism , Genetic Variation , Humans , Mutation Rate , Virus Replication
16.
Front Microbiol ; 12: 647693, 2021.
Article in English | MEDLINE | ID: covidwho-1346408

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people worldwide. Currently, many clinical trials in search of effective COVID-19 drugs are underway. Viral RNA-dependent RNA polymerase (RdRp) remains the target of choice for prophylactic or curative treatment of COVID-19. Nucleoside analogs are the most promising RdRp inhibitors and have shown effectiveness in vitro, as well as in clinical settings. One limitation of such RdRp inhibitors is the removal of incorporated nucleoside analogs by SARS-CoV-2 exonuclease (ExoN). Thus, ExoN proofreading activity accomplishes resistance to many of the RdRp inhibitors. We hypothesize that in the absence of highly efficient antivirals to treat COVID-19, combinatorial drug therapy with RdRp and ExoN inhibitors will be a promising strategy to combat the disease. To repurpose drugs for COVID-19 treatment, 10,397 conformers of 2,240 approved drugs were screened against the ExoN domain of nsp14 using AutoDock VINA. The molecular docking approach and detailed study of interactions helped us to identify dexamethasone metasulfobenzoate, conivaptan, hesperidin, and glycyrrhizic acid as potential inhibitors of ExoN activity. The results were further confirmed using molecular dynamics (MD) simulations and molecular mechanics combined with generalized Born model and solvent accessibility method (MM-GBSA) calculations. Furthermore, the binding free energy of conivaptan and hesperidin, estimated using MM-GBSA, was -85.86 ± 0.68 and 119.07 ± 0.69 kcal/mol, respectively. Based on docking, MD simulations and known antiviral activities, and conivaptan and hesperidin were identified as potential SARS-CoV-2 ExoN inhibitors. We recommend further investigation of this combinational therapy using RdRp inhibitors with a repurposed ExoN inhibitor as a potential COVID-19 treatment.

17.
Viruses ; 13(7)2021 06 24.
Article in English | MEDLINE | ID: covidwho-1289017

ABSTRACT

Arenaviruses and coronaviruses include several human pathogenic viruses, such as Lassa virus, Lymphocytic choriomeningitis virus (LCMV), SARS-CoV, MERS-CoV, and SARS-CoV-2. Although these viruses belong to different virus families, they possess a common motif, the DED/EDh motif, known as an exonuclease (ExoN) motif. In this study, proof-of-concept studies, in which the DED/EDh motif in these viral proteins, NP for arenaviruses, and nsp14 for coronaviruses, could be a drug target, were performed. Docking simulation studies between two structurally different chemical compounds, ATA and PV6R, and the DED/EDh motifs in these viral proteins indicated that these compounds target DED/EDh motifs. The concentration which exhibited modest cell toxicity was used with these compounds to treat LCMV and SARS-CoV-2 infections in two different cell lines, A549 and Vero 76 cells. Both ATA and PV6R inhibited the post-entry step of LCMV and SARS-CoV-2 infection. These studies strongly suggest that DED/EDh motifs in these viral proteins could be a drug target to combat two distinct viral families, arenaviruses and coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Exoribonucleases/antagonists & inhibitors , Lymphocytic choriomeningitis virus/drug effects , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Virus Replication/drug effects , A549 Cells , Amino Acid Motifs , Animals , Chlorocebus aethiops , Drug Discovery , Humans , Molecular Docking Simulation , Vero Cells
18.
Trends Biochem Sci ; 46(11): 866-877, 2021 11.
Article in English | MEDLINE | ID: covidwho-1283592

ABSTRACT

With sizes <50 kb, viral RNA genomes are at the crossroads of genetic, biophysical, and biochemical stability in their host cell. Here, we analyze the enzymatic assets accompanying large RNA genome viruses, mostly based on recent scientific advances in Coronaviridae. We argue that, in addition to the presence of an RNA exonuclease (ExoN), two markers for the large size of viral RNA genomes are (i) the presence of one or more RNA methyltransferases (MTases) and (ii) a specific architecture of the RNA-dependent RNA polymerase active site. We propose that RNA genome expansion and maintenance are driven by an evolutionary ménage-à-trois made of fast and processive RNA polymerases, RNA repair ExoNs, and RNA MTases that relates to the transition between RNA- to DNA-based life.


Subject(s)
RNA Viruses , Amino Acid Sequence , Genome Size , Methyltransferases , RNA Viruses/genetics , RNA, Viral/genetics
19.
Sens Actuators B Chem ; 328: 128971, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1023752

ABSTRACT

Continuous identification of suspected infectious cases is crucial to control the recent pandemic caused by the novel human coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Real-time polymerase chain reaction (real-time PCR) technology cannot be implemented easily and in large scale in some communities due to lack of resources and infrastructures. Here, we report a simple colorimetric strategy derived from linker-based single-component assembly of gold nanoparticle-core spherical nucleic acids (AuNP-core SNAs) for visual detection of PCR products of SARS-CoV-2 ribonucleic acid (RNA) template. A palindromic linker is designed based on SARS-CoV-2 specific E gene to program the identical colloidal SNAs into large assemblies along with a distinct red-to-purple color change. The linker acts as a probe of SARS-CoV-2 RNA in conventional PCR reaction. In the presence of the correct template the palindromic linker, which is complementary to a short region within the target amplicon, is cleaved by 5'-exonuclease activity of deoxyribonucleic acid (DNA) polymerase. Cleavage of the palindromic linker during the amplification process inhibits the single-component assembly formation of SNAs. So, positive and negative viral samples produce simply red and purple colors in the post PCR colorimetric test, respectively. Evaluation of the samples obtained from cases with laboratory-confirmed SARS-CoV-2 infection revealed that our assay can rival with real-time PCR method in sensitivity.

20.
PeerJ ; 8: e10181, 2020.
Article in English | MEDLINE | ID: covidwho-859064

ABSTRACT

SARS-CoV-2 is a betacoronavirus responsible for COVID-19, a pandemic with global impact that first emerged in late 2019. Since then, the viral genome has shown considerable variance as the disease spread across the world, in part due to the zoonotic origins of the virus and the human host adaptation process. As a virus with an RNA genome that codes for its own genomic replication proteins, mutations in these proteins can significantly impact the variance rate of the genome, affecting both the survival and infection rate of the virus, and attempts at combating the disease. In this study, we analyzed the mutation densities of viral isolates carrying frequently observed mutations for four proteins in the RNA synthesis complex over time in comparison to wildtype isolates. Our observations suggest mutations in nsp14, an error-correcting exonuclease protein, have the strongest association with increased mutation load without selective pressure and across the genome, compared to nsp7, nsp8 and nsp12, which form the core polymerase complex. We propose nsp14 as a priority research target for understanding genomic variance rate in SARS-CoV-2 isolates and nsp14 mutations as potential predictors for high mutability strains.

SELECTION OF CITATIONS
SEARCH DETAIL